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B O O K R E V I E W S

Applied Partial Differential Equations. By J. Ockendon, S. Howison, A. Lacey
& A. Movchan. Oxford University Press, 1999. 427 pp. ISBN 0 19 853243 1
(paperback). £25.

Any fluid dynamicist will, of course, be aware that partial differential equations are
the natural language for mathematical analyses of a vast range of physical phenom-
ena. This book is thus greatly to be welcomed, as it sets out theory and methods
for partial differential equations from the perspective of applied mathematicians who
are concerned with the actual application of mathematics to model physics. In the
spectrum that runs from rigorous ‘ε–δ’ analysis to phenomenological physics, this
book can perhaps best be compared in flavour with various texts on ‘mathematical
methods for physicists’: the motivation and illustrations are drawn from the au-
thors’ extensive experience of modelling physical and industrial problems, proofs are
generally eschewed, and the focus is on how to obtain analytic results and usable
formulae.

The material covered is, however, at a substantially more advanced level than that
in typical courses on mathematical methods for physicists. The preface describes the
book as suitable for a first-year graduate course, but I doubt that many starting grad-
uates have the breadth of background to appreciate both the detailed sophistication
of the analysis and the wide variety of physics underlying the modelling. Moreover,
the condensed and interwoven material does not seem to isolate and expose the main
ideas with quite the clarity a learner might hope for. I suspect its main use is thus
more likely to be as a reference for more advanced students and researchers and as
valuable source material for an instructor putting a course together. In this context, it
is worth noting that each chapter closes with a wealth of non-trivial exercises (without
solutions).

The book opens with two chapters on general first-order quasi-linear differential
systems, which introduce basic concepts such as Cauchy data and characteristics,
domain of definition, well-posedness, weak solutions and shocks. The third chapter,
largely on semilinear second-order scalar equations, provides a link to the following
three chapters on hyperbolic, elliptic and parabolic equations. While this might appear
a conventional division, the discussion moves well beyond the usual presentation of
the wave, Laplace and heat equations to include topics such as hodograph techniques,
similarity groups for nonlinear systems, and Riemann–Hilbert problems. A welcome
chapter on the important topic of free-boundary problems such as solidification, Hele-
Shaw flow and vortex-sheet dynamics focuses on issues of interfacial stability and
well-posedness that arise from the boundary motion. Finally, a chapter on non-quasi-
linear equations, such as the eikonal equation of geometric optics and the equations
for the differential geometry of deformed surfaces, together with a ‘rag-bag’ chapter
on miscellaneous topics, concludes the book. A conscious decision by the authors
to omit all discussion of numerical or asymptotic methods might be regretted on
grounds of balance, but the information content of the book still already exceeds
most texts.

The narrative style is chatty and informal with a strong personal stamp. A liberal
lacing of emotive expressions encourages the discerning reader to empathise with the
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authors’ instincts by reading danger signals, recognising red-letter days and seeing
analyses as trivial, tedious, delicate or hair-raising. ‘Feel’ and experience are invaluable
tools when attacking new problems, and I applaud the authors’ attempts to impart
some of theirs along with the technical content. Overall, a very worthwhile read, and
I’ll be glad to have a copy on my shelf.

J. R. Lister

The Least-Squares Finite Element Method – Theory and Applications in Compu-
tational Fluid Dynamics and Electromagnetics. By B. Jiang. Springer, 1998.
418 pp. ISBN 3 540 63934 9. DM 148.

The Finite Element Method (FEM) is a well-established approach to the numerical
solution of elliptic boundary value problems. In the case of self-adjoint differential
operators, arising for example in linear elasticity and heat diffusion, the FEM is
essentially a Rayleigh–Ritz technique that minimizes a functional of the unknown
solution in a suitable finite-dimensional approximation subspace. For such problems,
the FEM enjoys a best-approximation property, and automatically leads to algebraic
problems that are symmetric and positive definite.

Important elliptic problems involving partial differential equations in several vari-
ables, such as the velocity–pressure formulation of Stokes flow, are more delicate to
solve by means of the FEM. Indeed, the corresponding variational principles typically
yield saddle-point optimization problems. As a result, the approximation subspaces of
the different unknowns cannot be selected independently, and must satisfy a stability
condition known as the inf-sup or Ladyzhenskaya–Babuska–Brezzi (LBB) condition.
The LBB condition rules out the use of equal-order finite element interpolation for
velocity and pressure in the solution of Stokes flow by means of a mixed FEM.
Another consequence of the saddle-point nature of the associated variational prin-
ciple is that the discrete algebraic problem is indefinite, and thus more difficult to
solve.

The classical Rayleigh–Ritz FEM is of course limited to self-adjoint differential
operators. Boundary value problems involving non-self-adjoint operators (e.g. convec-
tive transport and Navier–Stokes flow) can be solved by means of a Galerkin FEM
(GFEM), which is a particular method of weighted residuals. For example, a complete
treatment of the GFEM solution of incompressible Newtonian flow is offered in the
book by Gresho & Sani (also reviewed in this issue of JFM). It is well known that
the GFEM is numerically unstable when applied to convection-dominated problems,
yielding spurious oscillations in the numerical results that sometimes only disappear
at the expense of inordinate mesh refinement.

The above difficulties with standard finite element techniques have motivated the
development of alternative approaches. One such approach is the Least-Squares
FEM (LSFEM) covered in the present book by Bo-nan Jiang. Basically, the LSFEM
amounts to minimizing the L2-norm of the residuals of the equations. This approach
offers numerous theoretical and computational advantages. Most notably, the LSFEM
always leads to symmetric and positive definite algebraic problems, and is not subject
to the LBB stability condition. This is important in practice. Indeed, equal-order
interpolation is allowed for all unknowns, and a standard iterative scheme can be
used to solve the discretized equations. Furthermore, the LSFEM can be implemented
at the element level, without any matrix assembly. Crucial to the practical usefulness
of the LSFEM is the transformation of the governing partial differential equations
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into a first-order system. This is accomplished by introducing additional physically
meaningful variables, such as fluxes, vorticity or stresses. This procedure obviously
increases the number of unknowns, and requires a proper treatment of boundary
conditions. It should also be noted that the transformation of a given problem (e.g.
Stokes flow) into a first-order system is not unique, thus yielding different LSFEMs
with potentially different numerical properties.

In his book, Bo-nan Jiang offers a unified treatment of the LSFEM. The author
covers both mathematical and computational aspects of the method, and illustrates its
properties by providing simulation results for a variety of physical problems in fluid
mechanics and electromagnetism. The intended readership includes engineers, physi-
cists and researchers having a basic knowledge of the standard FEM for second-order
elliptic problems. No special mathematical expertise beyond calculus and elementary
differential equations is required, but prior knowledge of fluid mechanics and electro-
magnetism is implicitly assumed.

This 418-page book is organized in five parts. Part 1 (Chapters 1–3) covers the
basics of the LSFEM. The author explains for simple one-dimensional convection
problems why the Galerkin method fails while the LSFEM is quite suitable and does
not need any stabilizing trick like upwinding. He also compares the LSFEM with the
mixed Galerkin method for first-order elliptic systems, and shows why the LSFEM
can accommodate equal-order elements. It is Jiang’s opinion that the theoretical basis
and analysis of the LSFEM is the bounded inverse theorem of linear operators,
which would explain why the LSFEM can provide solutions for all types of partial
differential equations (not only elliptic) within a single mathematical and computa-
tional framework, without any special treatment. Part 2 (Chapters 4–6) deals with
the theoretical aspects of the LSFEM applied to linear, first-order systems of partial
differential equations. The so-called div-curl, grad-div, and div-curl-grad formulations
are discussed in detail. Applications of the LSFEM to fluid mechanics are described
in Part 3 (Chapters 7–13). A wide variety of topics is covered, namely inviscid
irrotational flows (incompressible and subsonic compressible), steady and transient
incompressible viscous flows, convective transport, rotational inviscid flows governed
by the incompressible Euler equations, low-speed compressible non-isothermal viscous
flows, simulation of two-fluid flows, and high-speed compressible gas flows governed
by the Euler equations. Part 4 (Chapter 14) applies the LSFEM to the Maxwell equa-
tions of electromagnetism. Finally, Part 5 (Chapter 15) deals with the solution of the
discrete equations by means of the element-by-element conjugate gradient iterative
method.

I found the book informative, well written, overall decently produced, and certainly
useful to readers of JFM involved in Computational Fluid Dynamics who wish to
apply the LSFEM in their own studies. It should be noted that the book’s subject
matter includes many recent research results obtained by the author’s group, some
of which are unpublished elsewhere. The message conveyed in the text thus often
reflects the strong author’s personal opinions as to the LSFEM and its (more or
less?) indisputable advantages over other techniques. At times, the book very much
resembles commercial material wherein the LSFEM is presented as the overall best
buy available today in the marketplace, which can solve any problem in a robust
way and without any special, problem-dependent treatment. My personal opinion is
that such a super-method simply does not exist, but this is of course a matter of
debate.

Roland Keunings
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Incompressible Flow and the Finite Element Method, Vol. 1: Advection-Diffusion
and Isothermal Laminar Flow. By P. M. Gresho & R. L. Sani. John Wiley
and Sons, 1998. 1044 pp. ISBN 0 471 96789 0. $320.

While the book by Bo-nan Jiang (see the above review) dismisses in a few paragraphs
the classical Galerkin Finite Element Method (GFEM) for solving non-self-adjoint
problems such as advection-diffusion and Navier–Stokes flow, the present book by P.
M. Gresho & R. L. Sani devotes more than 1000 pages to that very subject!

Indeed, the two books vastly differ in style, content, and opinions. The following
quote from Gresho & Sani’s preface clearly defines their philosophy:

There are many ways to ‘do’ CFD (computational fluid dynamics) today, and there
will undoubtedly be more rather than fewer ‘tomorrow’. [. . .W]e shall simply state our
own opinion up-front (and ‘opinion’ it must be, as the jury is still out, and likely
to remain so, regarding ‘How best to do CFD’): the Galerkin finite element method
(GFEM) is one of the good ways to ‘do CFD’ – especially when flows in or around
‘real world’ (complex) geometry are of principal interest. Note that ‘good’ does not
necessarily imply easy, or robust. It does, in our view, imply accuracy and generality –
and, in some sense, ‘honesty’. It is an objective and honest method that tries to remain
true to the underlying PDE’s (partial differential equations). Hopefully there is still
a market for a method that displays these characteristics. There is also a significant
market for what we perceive to be less honest methods; namely, those modifying the
Galerkin principle in various seemingly ad hoc ways such as ‘upwinding’ and related
stabilizing and artificially dissipative methods. Such methods would be acceptable to
us (and, we believe, to many others) if, in addition to the continual demonstration of
their more-or-less acknowledged robustness, they would always be used in conjunction
with appropriate mesh refinement efforts that would convince both giver and receiver
that their final results do represent an accurate approximate solution to the stated
problem.

The authors themselves concede that “the scope of this text is both narrow and broad;
it is narrow in that it covers only advection-diffusion and isothermal laminar flow,
and it is broad because these important ‘basic’ topics are covered in much details”.
In fact, a second volume is planned, that would cover coupled transport problems
(e.g. buoyancy-driven flows), stability, continuation, and bifurcation analyses, free and
moving boundary problems, simulation of turbulent flows, and solution methods for
linear and nonlinear algebraic equations.

The book is organized into four chapters and three appendices. A myriad of topics
is discussed, whose coverage we can obviously not review in detail in a few paragraphs.
Chapter 1 (pages 1–21) introduces the subject matter, mainly by pointing to classical
books on incompressible Newtonian flow, to the FEM itself, and its application to
fluid mechanics. Although very informative (I liked in particular the many relevant
quotes from the cited books), this chapter does not serve as a formal introduction
to these topics. Prior knowledge is clearly required. In Chapter 2 (pages 23–356),
the authors discuss the application of the GFEM to the linear advection-diffusion
equation. Most notably, they display in ‘full glory’ the semi-discrete differential
equations generated by the GFEM for several one- and two-dimensional elements,
and offer a very detailed discussion of important topics such as dispersion, phase
and group velocity, wiggles, and mesh design. This chapter also describes one of the
authors’ most important research contributions to this field, namely how to employ
local error control to vary the integrator step size. Many numerical examples are also
provided. Chapter 3 (pages 357–845) covers the GFEM solution of the incompressible
Navier–Stokes equations. It is clearly the most important chapter in the book. As for
the advection-diffusion equation, the authors offer a very detailed discussion of the
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continuum mechanical problem (e.g. many possible formulations, boundary and initial
conditions), and give a complete exposition of the GFEM equations. In particular,
the important and difficult issues of choice of elements, LBB stability, and pressure
modes are covered at length. Solution methods for the semi-discrete time-dependent
equations are discussed in the framework of differential-algebraic equations, a unique
feature of this book. These topics and many others are illustrated with numerical
examples, the most comprehensive being the impulsive start-up flow past a circular
cylinder. Finally, Chapter 4 (pages 847–872) describes the a posteriori computation of
derived quantities like vorticity, heat flux, forces, and moments. In the appendices, the
authors develop the one- and two-dimensional finite element local matrices (which is
useful for code debugging), they further compare finite elements and finite volumes,
and discuss the GFEM in the formal context of projection methods.

This is a unique book, both in style and content. Definitely not an introductory
text to the subject matter, it contains a wealth of detailed technical information,
much of which is simply not available elsewhere. Its numerous digressions, remarks,
quotes, speculations, and rules of thumb are both useful and worth the patience of
the reader; they also contribute to the gigantic size of the book. The style is informal;
some readers (like myself) will love it, others will hate it. I cannot resist the pleasure
of quoting the following excerpts, selected among numerous other candidates in the
same vein, which reveal much about the authors’ style of writing and opinions on
difficult issues.

Regarding the choice of elements (Section 3.13.2), for example, the authors write:

In this section we shall attempt to summarize the state of confusion (a moving
target) regarding element choices, focus on those subsets of elements that we advocate
(partly, of course, because of our own experience), and still try to present a reasonably
balanced presentation. That this is not entirely possible is probably obvious, since
there often seems to be a fairly large increase in adrenalin flow whenever the subject
of ‘element choices’ is discussed. Our discussion will probably also create a few new
enemies – a plight we could bear if in addition it attracts enough outsiders and
newcomers to give finite elements a try – so that, on balance, the FEM might move
forward faster. Our general philosophy will be based on the premise that simplicity
is still beautiful, and on the fact that the theory is too often silent. . . .A colleague
recently opined that the entire field would still be in the Stone Age if practitioners
had waited for the theorists to prove ‘consistency, stability, accuracy, convergence,
etc’. We are already clearly in violation of (our understanding of) the ‘French school’
– for example – which usually seems to require some minimum number of proved
theorems before any computer programming and subsequent numerical experiments
are permitted. But even they manage to ‘ignore’ the unfortunate fact that no one has
yet been able to prove global existence of solutions to the subject of this book – the
NS equations. . . .C’est la vie.

In Section 2.6, the authors offer the following inspired comments on spurious
numerical oscillations:

Wiggles – the Nemesis of CFD. Perhaps no other single difficulty has generated
more frustration and caused more effort than the rapid, high-frequency – typically
(but definitely not always) node-to-node (or time-step to time-step) oscillations that
come out of the computer and pollute the putative ‘solution’ than that called, most
simply, wiggles. Perhaps no other aspect of CFD has so divided the world into two
basic camps: those who hate/fear the wiggles so much that they use only methods
that never permit their occurrence, and those who, while not exactly embracing them,
believe that there is a message in the wiggles and that there is more to good CFD
analyses than simply being wiggle-free. [. . .] The price that is often paid by those who
a priori suppress wiggles by their choice of a numerical method is simply that they
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are often solving the wrong problem: i.e., the effectively/numerically much-reduced
Peclet or Reynolds number leads the analysts to believe that they are really solving
some tough problems when, in fact, they are not (a virtual reality of CFD) because
they have changed the problem. The wiggly-camp, on the other hand, often has much
difficulty with tough problems wherein, in the worst case, they can get no solution at
all. This camp, in which we are fairly firmly (but perhaps not permanently) entrenched,
believes that ‘The wiggles are telling you something’ and try to use wiggle signals as
a guide to better mesh design (where possible) or, in the worst cases, admit that the
stated problem – truth be told – is just too difficult (for the current generation of
computers).[. . .] While not as bad as turbulence, or pornography, or even art, each of
which you may not be able to define but believe that you recognize it when you see
it, there really is no pure and simple always-applicable definition of wiggles except
perhaps this (which may require some knowledge of physics): wiggles are non-physical
oscillations.

The authors’ belief is reflected in their new acronym ‘GFEMIA: Galerkin Finite
Element Method Intelligently Applied’, which “requires, besides a lower bound on
the analyst’s IQ, not much more than common sense – and, of course, an appreciation
for some of the subtleties of both fluid mechanics and the numerical methods used
to describe it”. They also attribute to J. Ferziger the following deep statement: “The
greatest disaster one can encounter in computation is not instability or lack of
convergence, but results that are good enough to be believable but bad enough to
cause trouble”.

Considering the length of these (very relevant) digressions, I found it amusing
that the authors emphasize the velocity–pressure formulation of the Navier–Stokes
equations ‘partly owing to space limitations’ (page 360)!

This is a great book which I am happy to recommend to the readers of JFM.
Among its many qualities, honesty is one that is prominent. Indeed, Gresho & Sani
never hesitate to play the devil’s advocates, by displaying both the positive and
negative features of their beloved GFEM. I believe this book will contribute much to
the healthy education of future CFD enthusiasts!

Roland Keunings


